
keen-retry
A crate to help improve the resiliency

and robustness of Rust applications

 Current as of keen-retry 0.3.0 and Rust 1.73

About the cover art and the art in crafting resilient software

The cover of this book is a vivid allegory for the resilience and robustness provided by the keen-
retry crate within the Rust programming ecosystem. Central to the artwork is a gear imbued with

the distinctive rust hue, a nod to the Rust language itself, embodying the strength and reliability of
programs built with Rust. This gear is encircled by concentric shields, etched with binary patterns
that evoke the digital fortification that keen-retry adds to Rust applications.

Below the central gear rests an anvil, a traditional symbol of craft and durability, representing the
keen-retry crate itself, with occasional sparks that, together with the hammer (representing the

programmers), emphasize the iterative process of software development – refining and reinforcing
through testing, error handling and meaningful instrumentation. The gear stands unblemished amid
a tumultuous sky, streaked with lightning that represents the unpredictable challenges of crafting a
resilient software that adds value to users in an elegant way. Despite the tempestuous environment,
the gear's integrity is uncompromised, illustrating the "Rock Solid" stability keen-retry aims to

provide.

In the foreground, the keen-retry crate's logo overlays the scene, a subtle labyrinth design at the

heart of the anvil. This maze signifies the intricate journey of resilient software, highlighting the
inevitability of encountering errors that are not roadblocks to the operation, but rather steps towards
success. The labyrinth is intentionally simple, underscoring the crate's role in simplifying the
complexity of implementing resilience while maintaining thorough instrumentation.

The inclusion of the Rust logo and the stylized Rustacean – the Rust community's beloved crab
mascot – at the base of the artwork signifies the fundamental role of Rust and its vibrant community
in enabling the creation of resilient systems.

The artwork, in its entirety, projects a sense of strength and confidence, with a technological edge
that the keen-retry crate aims to instill in Rust applications: a tool for crafting steadfast Rust

applications against the backdrop of digital adversity.

The prompt offered to Dall-E

2

Table of Contents
Introduction..5
A Dive Into The Problem..6

Understanding the Challenge of Transient Errors..6
The Complications of Retry Logic..6
Integration and Performance Concerns..6
The Role of keen-retry...6

keen-retry Design Decisions...7
Understanding Retries..7
Two Types of Results...7
Functional Approach to Error Handling..7
Zero-Cost Abstractions..7
Retry Logic Composition at the Application and Library levels...8
Backoff Strategies..8

Getting Started..9
The crate's purpose..9
High-level overview of features..9
The keen-retry Diagram...10
Preparing your Library’s Errors...11
Understanding the Library API..12
Understanding the Application API...12
Code Layout and Naming Conventions...12

Structuring Library Layers with keen-retry..12
Application Layer Conventions..13

Use Cases..14
Event-Driven Programming...14
Network Operations and Inter-Service Communication..14
Resource Access..14
User-Level Tasks..14
Application Start-Up..14
Background Jobs and Workers...14
Elaborated Internal API Implementations..14
Mobile & Embedded..15

Patterns...16
Adding a keen-retry wrapper to your library...16
Retrying with Backoff Strategy Configuration..17
Partial Completion with Continuation Data...17

Participants and Interactions...17
Partial Completion with Continuation Closure..18
Writing a keen-retry adapter for a third-party library..18
Writing Meaningful Instrumentation for Retry Operations...19
Using Composable Retry Policies in the Library Level..20
Using Composable Retry Policies in the Application Level..21

Anti-Patterns in Resilient Software Design..22
Introduction..22
Avoid Non-Transient Retries...22
Infinite Loops and Lack of Backoff...22
Overcomplexity in Retry Logic...22
Retryable Library without Integration Tests..22

3

No Unit Testing when using Wrapped Libraries..23
Appropriate Backoff Strategy..23
Instrumentation of Retry Processes...23
Nesting Retries Without Timeouts...23
Lack of Idempotency...24
Misplaced Retry Logic...24
Over-reliance on Retries..24
Ignoring Contextual Information...24
Retry Logic with Static Parameters...24

Instrumentation and Logging...25
Monitoring Retry Outcomes..25
Logging First Attempt Outcomes..26
Enriching Retry Data...26
Additional Features..27
Other Uses..27

Performance Analysis...28
Introduction..28
Benchmarking Methodology...28
Results..28
Implications...29
Conclusion...29

Backoff...30
Retrying Strategies without Backoff..30
Retrying Strategies with Backoff...31
Common Backoff Algorithms and Analysis..31

Constant..31
Arithmetic Progression...32
Geometric Progression..32
The crèam de la crèam: Exponential Backoff with Random Jitter...33

Comparison to Similar Crates..35
Key Features of keen-retry..35
Other Notable Rust Libraries for Retrying and Error Handling..35
Comparative Table of Features..36
Key Differences...36

Important Staging Rust Features..37
Async fn in Traits...37
The Try trait...37

4

Introduction
The keen-retry crate emerged from the need to enhance the robustness of Rust applications by

simplifying the complexity of retry logic. Originally inspired by the challenges of working with
bounded channels where the “buffer is full” outcome is common, the crate has evolved to address a
broader spectrum of error handling and recovery scenarios across Rust applications – but, contrary
to the existing solutions at the time, always with a primary focus on performance.

The aim of keen-retry is not only to extend the functionality of Result types to encourage

retryability but also to provide a clear, expressive and familiar API that can be utilized by both
library authors and application developers. Both the Library API and the Application API,
demonstrated in the tests/use_cases.rs file, form the foundation for chaining retryable

operations, ensuring that error recovery logic can be composed elegantly at any level of the
application stack.

The motivation behind keen-retry is to deliver a simple, yet powerful library that focuses on

performance, code maintainability, and thorough instrumentation. It offers a suite of features that
enable developers to build resilient and robust software with ease. It is our hope that keen-retry
will be as beneficial to others as it has been to us.

In this book, we embark on a journey through a variety of operations typical in client/server
interactions – such as connect, send, receive, and broadcast – mirroring the procedure, consumer,
and producer patterns. These operations are thoroughly explored in tests/use_cases.rs,

showcasing the fundamental use cases that set keen-retry apart from similar crates. By the end,

we will also compare keen-retry with other crates, aiding in your decision on whether it's the

right choice for your Rust projects.

Representing a concerted effort to mature the keen-retry crate, the following pages delve

deeply into its architecture. We explore a range of use cases and design patterns, highlight some
anti-patterns to avoid, and present well-founded arguments supporting the crate's development
decisions. Interestingly, the process of writing this book has led to significant enhancements to the
keen-retry crate, making it more flexible and user-friendly. These improvements have

culminated in the release of version 0.3.

5

A Dive Into The Problem

Understanding the Challenge of Transient Errors
Transient errors are temporary issues that can disrupt the flow of a program but may not recur if the
operation is retried. These can range from network timeouts to temporary resource unavailability.
The transient nature of these problems means that immediate retrying could resolve the issue
without further intervention. However, not all errors should be retried - some indicate more serious
issues that require different handling. The challenge lies in distinguishing between these errors,
handling them appropriately, and doing so with efficiency and clarity in code.

The Complications of Retry Logic
Implementing retry logic typically involves writing repetitive code, which can clutter the logic of
operations and lead to maintenance challenges. Moreover, naive retry approaches can exacerbate
the problem, such as by hammering a failing service with a flood of repeated requests, leading to
further instability and resource exhaustion. The need for a sophisticated retry strategy that includes
backoff logic and error discrimination is critical for building resilient systems – as well as
instrumenting all the relevant events, so to allow the Application to continue on its iteractive
evolutionary process.

Integration and Performance Concerns
Many existing solutions for handling retries come with their own set of problems: they can be
cumbersome to integrate into existing codebases, they might introduce performance overheads, or
they don't support the increasingly common asynchronous operations in Rust. There's a need for a
solution that's easy to integrate, has no performance impact, and supports both synchronous and
asynchronous paradigms.

The Role of keen-retry
The keen-retry crate addresses these issues by offering a robust framework that allows Rust

applications to elegantly handle and recover from transient errors. It differentiates between retryable
and fatal outcomes and integrates seamlessly with existing codebases. With zero-cost abstractions
and zero-copy semantics, it ensures efficiency, and with comprehensive backoff strategies, it
prevents resource exhaustion. Also, through its flexible and functional API, advanced
instrumentation and logging is enabled. The crate's APIs, both for libraries and applications, enable
clear and concise expression of retry logic, addressing the core challenges of writing resilient
software.

6

keen-retry Design Decisions
The keen-retry crate is underpinned by the principle of resilience in software systems. In the

context of distributed environments, resilience translates to a system's capacity to gracefully handle
and rebound from errors, particularly transient ones such as network glitches or temporary
unavailability of services. keen-retry offers a structured approach to tackle these issues,

enabling retryable operations under defined conditions, promoting system robustness.

Understanding Retries
Retry mechanisms are pivotal in allowing applications to re-attempt operations when faced with
failures, providing an opportunity for self-recovery if underlying issues are temporary. However,
discerning between errors that warrant a retry from those that don't is crucial. keen-retry makes

this distinction clear, differentiating between transient, potentially recoverable failures and
permanent ones, thereby enabling developers to craft sophisticated retry policies.

Two Types of Results
At the core of keen-retry is the RetryResult type, which offers a nuanced approach to error

handling by introducing three states: Ok, Transient, and Fatal. Ok and Fatal represent terminal
states, readily convertible to Rust's standard Result type. In contrast, the Transient state triggers a

sequence of recovery attempts.

Subsequently, ResolvedResult comes into play as the “Final” result after all retries have been

exhausted, encapsulating the comprehensive outcomes of the retryable operations. Both maintain
compatibility with Rust's Result type while offering richer state information for in-depth analysis.

Refer to the library’s documentation for detailed insights.

Functional Approach to Error Handling
Adhering to Rust's functional conventions, keen-retry integrates with the language's

Result<> and Option<> types, maintaining an idiomatic user experience. This approach

encourages clear, maintainable code and sidesteps common issues like callback intricacies typically
associated with imperative error handling.

High Order Functions are made available for RetryResult and ResolvedResult, enabling

detailed instrumentation at all stages of the error handling and recovery process.

Zero-Cost Abstractions
The keen-retry crate champions first-class integration, allowing methods to return

RetryResult with seamless conversion to a standard Result at compile-time. This design

allows libraries integrated with keen-retry to be used without any retrying features, as if they

returned a standard Result<> – which not only accounts for the zero-cost behavior, but also eases

integration by allowing a progressive approach.

7

https://docs.rs/keen-retry/0.2.2/keen_retry/enum.ResolvedResult.html

/// In the example bellow, `YourLibrary` uses the `keen-retry` API
/// and we may, simply, not opt-in for any retrying features
/// -- it will behave like a standard `Result<O, E>`
fn do_something() -> Result<(), StdErrorType> {
 let handle = YourLibrary::new(...);
 handle.retryable_method().into_result()?;
 Ok(())
}

Above, opting out of retry features simplifies the API, as you don’t need to provide the “raw”
methods – returning the standard Result<>. Please see the "Getting Started" section for more

details.

Retry Logic Composition at the Application and Library levels
keen-retry excels at composing sophisticated retry logic through chaining, a feature that is

indispensable in systems reliant on multiple external services. This composability enables
developers to construct clear and maintainable error recovery workflows that benefits from the
separation of concerns needed by maintainable and complex software.

Bellow, you will see code that chains the retrying up to a reconnection, if sending a message fails:

self.send(payload)
 .retry_with_async(|payload| async move {
 if !self.is_connected() {
 if let Err(err) = self.connect_to_server().await {
 return RetryResult::Fatal {
 input: payload,
 error: TransportErrors::CannotReconnect {root_cause: err.into()}
 };
 }
 }
 self.send(payload)
 })
 .with_exponential_jitter(...)
 .await

The chaining highlighted above is done in the application level, where the
connect_to_server() method returns a standard Result<> and may have its own retry

logic. Please refer to the “Patterns” section for chaining done at the library level – allowing further
separation of concerns.

For guidelines on preventing excessive delays from nested retries and implementing timeouts, refer
also to the “Anti-Patterns” section.

Backoff Strategies
Implementing retries without a strategy can lead to exacerbated problems, like overwhelming a
struggling service with a flood of retries. keen-retry provides configurable backoff algorithms

that can be employed to intelligently space out retry attempts, giving systems the breathing room
needed to recover.

8

Getting Started

The crate's purpose
As mentioned, the keen-retry crate provides a robust framework for Rust applications to handle

and recover from transient errors more effectively. It equips developers with the tools to transform
standard operations into retryable workflows with a focus on performance and code clarity.

The crate distinguishes between two kinds of “Results”: one for outcomes that are not “final” (for
which repeating the operation may fix the transient issue) and the other for final results, after
passing through a possible retrying process.

The crate also offers a “Library API” and an “Application API”:

• Library API: Crafted for library developers, this API makes your functions retryable

with zero-cost abstractions. It enables incorporating robust error discrimination with
minimal changes, maintaining expressiveness and performance.

• Application API: Aimed at application developers, this API delivers deep control over

error recovery processes, harnessing zero-copy and advanced instrumentation for creating
sophisticated retryable workflows.

High-level overview of features
• Clear Error Discrimination: The “Library API” consists, primarily, of the type

RetryResult, which enhances the standard Rust Result type by introducing a third

variant: Transient (in addition to Result::Ok and Result::Err). Special care was

taken, throughout the crate, to leverage zero-cost abstractions and zero-copy semantics,
enabling this enriched type to have the same performance as the standard Result<>.

• Functional Application API: A set of High Order Functions, enabling detailed
instrumentation and zero-cost abstractions and composability. On the other hand,
applications are free to not opt-in for retries: a RetryResult may be easily converted to a

standard Result if the retrying features are not desired.

• Zero-Cost Abstractions: If an operation succeeds or fails fatably on the initial attempt, no
extra code is executed – when compared to the standard Result<>. See the “Performance”

section for more details.

• Zero-Copy Semantics: Important for consumer operations that consume their inputs, the
semantics used here adhere to the ones used by several performant crates throughout the
Rust community, where any unconsumed inputs are returned back on errors, avoiding the
need to copy, clone, or to regenerate them during retries. We are giving a name to this
semantic: “Recoverable Consumption”, as it is essential for writing resilient software that is
also efficient.

• Composable Retry Policies: This feature advocates for a separation of concerns, enabling
more maintainable code. It allows complex retry operations to be decomposed into simpler,

9

more manageable components, thereby enhancing code clarity and facilitating easier updates
and modifications.

• Advanced Instrumentation: The crate allows different handling for the initial attempt and
retries. Central to the zero-cost abstractions, this feature also added the flexibility to allow
detailed instrumentation and error reporting, as well as nested retry logic support – for
instance, a network send() might fail because the connection was dropped: the retry

operation could spend some time verifying the connection and even reconnecting and
restablishing the connection context. See the tests/use_cases.rs integration test for

a thorough example of how this feature is implemented with a nice and elegant separation of
concerns.

• Sync and Async Support: Full support for both synchronous and asynchronous operations,
allowing it to fit seamlessly into various types of Rust applications. Features are

available for turning off Tokio / async support and all related dependencies.

• Backoff Strategies: Configurable backoff strategies to prevent resource exhaustion during
retries are available. For a thorough overview, please refer to the “Backoff” section.

This comprehensive suite of features is crafted to provide a scalable and expressive error handling
and recovery solution that fits naturally within the Rust ecosystem.

The keen-retry Diagram
This is the birds-eye-view of how to work with the keen-retry crate:

lib_method()

opt-in
to keen-retry

std::Result<>

 no

 RetryResult

.retry_with()
using a backoff strategy

yes

sync/async

KeenRetryExecutor

lib_method()

the retrying process

std::Result<>

ResolvedResult

Library API

Application API

Please notice the following from the above diagram:

10

• lib_method() is a method inside your library, enabling the keen-retry capabilities to

your users by returning a RetryResult.

• RetryResult enhances the kinds of Result<> your library reports: they may be Ok,

Transient and Fatal – enabling the distinction of the two nature of errors.

• At the application, developers have the choice to opt-in to the keen-retry features.

Opting-out is as easy as calling .into_result(). Otherwise, call .retry_with()

and one of the backoff strategies to get a ResolvedResult, which, then, may be

converted back to a standard Result<>.

This birds-eye-view is enough to fully expose the “Retry Features” of the library. Looking in more
details reveal another aspect: instrumentation.

• The RetryResult type may be used by libraries to log successes on the first attempt, fatal

failures on the first attempt and transient failures that will be subjected to retrying. Apart
from the inspections, High Order Functions are available to enable applications, for
instance, to measure the time spent in retrying – which is done by enriching the “input” with
time measurements data. Please refer to the “Patterns” section for more details.

• The closure ingested by .retry_with() typically recalls the operation. This is the point

where nested retryable operations may be invoked to make the transient failure go away.
Additional instrumentation may be added here as well.

• Once the retrying process is over, a ResolvedResult is generated. With this object, the

application may log the same information available to libraries through RetryResult, as

well as log additional information such as the number of retries performed, the errors
encountered, and, if you have enriched the input with time measurements, you may also log
the time lost in the retrying process.

Preparing your Library’s Errors
For the keen-retry crate to function optimally, it's crucial that your library's custom error types

are designed with a clear distinction between transient and fatal errors. This separation not only
streamlines the retry process but also aids in more intuitive error handling. We recommend
encapsulating this logic within the custom error type itself. Implementing a method like
.is_fatal() within your error definitions can effectively facilitate this distinction. Changes to

the error types should prompt a review of this method to ensure consistent and accurate error
classification.

Additionally, to embrace the principles of zero-copy, it's important to handle input consumption
judiciously, especially in error scenarios. When an input is consumed but not utilized due to an
error, it should be returned to the caller as part of an error variant. This practice, which we term
“Recoverable Consumption”, ensures that no information is lost and minimizes unnecessary data
replication. This approach not only conserves resources but also maintains the integrity and
continuity of your data flow, critical for efficient error handling and recovery in robust applications.

11

Understanding the Library API
The Library API centers around the RetryResult type, which your library functions will return

to signal retryable operations. It's easy to integrate:

/// Wrapper around [Self::connect_to_server_raw()], enabling `keen-retry` on it
pub async fn connect_to_server(&self) -> RetryProcedureResult<ConnectionErrors> {
 self.connect_to_server_raw().await
 .map_or_else(|error| match error.is_fatal() {
 true => RetryResult::Fatal { input: (), error },
 false => RetryResult::Transient { input: (), error },
 },
 |_| RetryResult::Ok { reported_input: (), output: () })
}

This API also offers High Order Functions for adding time measurements and other metrics,
enriching the data available for logging and performance monitoring. The special section
“Instrumentation and Logging” is dedicated to this topic.

Understanding the Application API
At the application level, keen-retry provides a functional API that allows for intricate control

over retry logic. Developers can opt-in for retries, specify backoff strategies, and convert
RetryResult to ResolvedResult for final outcomes:

let resolved = library_function()
 .retry_with(|input| handle_transient(input))
 .<one-of-the-backoff-strategies>(...);

Application developers can enrich inputs with additional data, like timestamps, to track the duration
of retries, and the ResolvedResult type facilitates detailed logging of the retry process,

including the number of attempts and the nature of encountered errors. Please refer to the “Patterns”
section for examples.

Code Layout and Naming Conventions
The keen-retry crate introduces powerful capabilities for both libraries and applications,

necessitating an organized and consistent approach to leverage its full potential. This section
outlines recommended practices for structuring your code and naming conventions to foster
maintainable and well-designed solutions. For practical examples of the models presented here,
refer to tests/external_library.rs and tests/use_cases.rs.

Structuring Library Layers with keen-retry

When integrating keen-retry into your library, consider organizing your code into distinct

layers:

1. Raw Methods Layer:
• Purpose: These methods represent your library's core functionalities without keen-
retry enhancements. They typically return a standard Result<>.

12

• Naming Convention: Suffix these methods with *_raw().

• Visibility: They are essential for internal unit tests but may not need to be public.
2. Retryable Methods Layer:

• Purpose: This layer transforms the “raw” methods returning a standard Result<>

to keen-retry’s RetryResult<>, effectively “Adding the Library API layer”.

These methods are your library's public face, designed for direct application use.
• Naming Convention: Use straightforward names without prefixes/suffixes, except

when adding a Composed/Nested layer.
3. Composed/Nested Library Retry Logic Layer:

• Purpose: This advanced layer allows libraries to encapsulate complex retry logic,
abstracting details from the application developers. For example, a send() method

might include logic to check and restore connections after the operation fails.
• Naming Convention: The methods in this layer should be the primary public

interface, while the underlying “Retryable Methods” become internal and should be
renamed by the *_retryable() suffix.

• Visibility: These methods should be public, providing a simplified interface for
application developers.

Application Layer Conventions

In your application, introduce an additional layer to interact with the keen-retry API, offering

the error handling and recovery to the rest of the Application:

• Application-Specific Retry Logic Layer:
• Purpose: This layer houses the application-specific retry logic, instrumentation,

backoff strategy customization, and conversion of keen-retry enriched Result

types back to standard Result<>.

• Naming Convention: Prefix these methods with keen_*() for each retryable

operation.
• Goal: This layer ensures that the application logic remains streamlined and focused,

with complexity managed within these wrapper methods.

By adhering to these guidelines, you ensure a clear separation of concerns and maintain a
consistent, intuitive structure across your projects, enhancing readability and maintainability.

13

Use Cases
The keen-retry crate is a versatile tool designed to enhance reliability in scenarios prone to

transient errors. Below are key use cases where keen-retry can significantly improve the

resilience of your application:

Event-Driven Programming
Whether it's local event handling with channels or remote events in a microservices architecture,
keen-retry ensures that messages are processed reliably, even in the presence of network

hiccups or service interruptions.

Network Operations and Inter-Service Communication
For network requests, database transactions, or remote services interactions, transient failures are
common. keen-retry wraps these operations in a retryable layer, applying strategies like

immediate retries, exponential backoff, or custom logic tailored to the specific use case.

Resource Access
Accessing files or other system resources can fail temporarily due to temporary spikes in usage.
keen-retry allows these operations to be retried smoothly, enhancing the stability and user

experience of the system.

User-Level Tasks
When user-initiated actions – like data submissions – fail, keen-retry steps in. It automatically

retries these tasks, reducing the frustration and manual retry attempts from the user end.

Application Start-Up
keen-retry is particularly useful during an application's start-up routine, ensuring that

connections to external services or databases are established without hiccup, despite any transient
issues.

Background Jobs and Workers
For background tasks that fail due to temporary issues, keen-retry can automatically re-attempt

processing, minimizing manual oversight and intervention.

Elaborated Internal API Implementations
The Application API of keen-retry allows developers to implement custom retry logic that

conforms to the specific demands of their applications, offering granular control over how retries
are managed.

14

Mobile & Embedded
User experience may be adversely affected by the connectivity challenges experienced in a mobile /
embedded environment. By using keen-retry you can make the user experience to be as smooth

as possible.

15

Patterns
In the first part of the book, we delved into the foundational concepts and the keen-retry crate's

basic usage. Now we proceed to explore advanced patterns and best practices for integrating
keen-retry into your systems, ensuring that they are not only resilient but also maintainable and

efficient.

As general guidelines, when using keen-retry, it is recommended:

For Libraries:

• Define clear conditions for when an operation should be retried and when it should fail
immediately. Usually this is done by having custom error types and placing this knowledge
along with them, in a .is_fatal() method, as discussed in the “Getting Started” section.

• Make your methods return RetryResult instead of the standard Result<>: if you don’t

own the library, create an adapter type to put the new methods there.

Having the RetryResult methods available inside the libraries are advantageous, as other

libraries may use these methods for an easy determination of the transient failures.

For Applications:
• Define the retry algorithm – possibly, by just calling the same operation again or by chaining

retryable operations for complex workflows with enhanced resiliency.
• Consider one of the backoff strategies to avoid overwhelming resources.
• Use the High Order Functions to create rich, informative and meaningful instrumentation.

Bellow follow the details of the established patterns that promote resiliency and clarity.

Adding a keen-retry wrapper to your library
For libraries and for the operations you want to add retrying features to, wrap them with a method
that converts the standard Rust’s error handling to a RetryResult.

/// Assume `raw_broadcast()` is a function that returns a `Result`.
fn broadcast(message, targets) -> RetryConsumerResult<InputType, ErrorType> {
 match raw_broadcast(message, targets) {
 Ok(output) => RetryResult::Ok(output),
 Err(e) => match e {
 ErrorType::FailedNodes(failed_nodes) => RetryResult::Transient(failed_nodes),
 _ => RetryResult::Fatal(e),
 },
 }
}

This pattern shows how to convert a standard Result into one of the RetryResult variants,

differentiating between transient and fatal errors.

16

There are some sugar types to better map the operations regarding the data they work on:
RetryConsumerResult, RetryProcedureResult and RetryProducerResult.

As seen, zero-cost abstractions guarantee we can use broadcast() as if it returned the standard

Result type when the caller doesn’t opt-in for retries: simply call .into_result() and the

occurrence of a single “failed node” will be translated to Result::Err with zero-cost.

Retrying with Backoff Strategy Configuration
After writing a keen-retry wrapper for your API, you may configure a simple retry & backoff

strategy that defines the delay between retries and the maximum number of re-attempts:

// Use a simplistic linear backoff strategy for retries
let result = broadcast(message, targets)
 .retry_with(|remaining_targets| broadcast(message, remaining_targets))
 .with_delays((100...=1500).step_by(100).map(|s| Duration::from_millis(s)))
 .into_result();

Please refer to the section “Common Backoff Algorithms and Analysis” for additional information
on common strategies and other usage scenarios.

Partial Completion with Continuation Data
The “Partial Completion with Continuation Data” pattern is intended to handle operations that can
be completed in stages. It's especially useful when an operation targets multiple recipients or
systems and each may independently succeed or fail. The pattern ensures that partial success is
captured and the remaining operation can be attempted again.

Participants and Interactions

• Initiator: The input or output of partially completable operations are, typically, a list of
elements.

• Recipients/Providers: For partially completable operations that produces an output, the list
usually consists of the “sources” that produce the elements – which will be gradually
grouped together on success. On the other hand, for partially completable operations that
just consume a set of inputs, the caller may, for example, put a set of “targets” in a vector
that a message needs to be dispatched to – Transient failures returns back the vector with the
remaining elements in it, for a new attempt.

17

Build a message
and vector of targets

.retry_with()
using a backoff strategy

sync/async

KeenRetryExecutor

broadcast(m,t’)

the retrying process

std::Result<>

ResolvedResult

broadcast(m,t)
returns t’ with the failed targets

in a Transient variant

Retry
Result

 pre-operation

Partial Completion with Continuation Closure
This pattern is similar to the previous one – “Partial Completion with Continuation Data” – but
covers the case where hidden sources provide the inputs. For this reason, rather than returning data
on the Transient variant, this pattern is ruled by a “Continuation Closure” – which, if called

several times, progresses further and further into completion, retrying suitable failed operations.

An example would be a variation of the example above, where the equivalent for the vector of
targets is not visible to the caller: instead of returning the internal library types directly, a Boxed
closure is returned containing the call equivalent to broadcast(m, v’).

Using this pattern enables the implementation of complex retry logic that hide their details from the
users by deepening into the “separation of concerns” – much needed by the application logic layer,
which needs to minimize confusing details without sacrificing features.

For a thorough example, please see the test partial_completion_with_continuation_closure()

 in tests/use_cases.rs.

Writing a keen-retry adapter for a third-party library
Ideally, the retryable methods would be incorporated directly into the library, taking the place of the
“raw” methods that return a standard Result<>. So, when making a third-party library retryable,

in keen-retry terms, it is advisable to create a new type with all the library methods you use

there and let the Application use this new adapter type instead of the original.

18

If you have a big system and the library is widely used, the best approach would be to have the
adapters in their own crates. To easily distinguish those crates, lets prefix their names with
“retryable_<original library name>”.

When diving into the details, it is important to inspect methods that consume their inputs. These
kind of methods offer a particular challenge to retrying: if they do not give the input back, on
transient failures, we would either have to copy its contents before the first attempt or regenerate the
input if retrying is needed, both with distinct performance impacts.

However, there isn't a specific, widely-recognized term for this programming semantic in the Rust
community, even when it's a pattern that is occasionally seen in Rust APIs, such as
Crossbeam::Channels. The idea is to allow for recovery or reuse of the inputs in the face of

an error, which can be particularly important in Rust due to its ownership system.

Since this pattern ensures that resources are not lost when an error occurs in “consumer methods”
and allows the caller to attempt recovery or retry, we could coin a term that reflects this
functionality. Lets call it “Recoverable Consumption”, as it suggests that the consumption of the
input is recoverable, as the input should be returned on error.

So, for creating optimal consumption operations that are retryable, keep in mind the original
semantics must adhere to the “Recoverable Consumption” already, or you must force it to adhere to
it (most probably by copying the input) before the first attempt. Don’t forget to hint the original
library’s author about this proposed semantics, asking them to adhere to it on future versions so
their libraries may be friendly to resilient programming.

With that particularity addressed, please proceed just as specified in the pattern “Adding a keen-
retry wrapper to your library”. Notice that no special semantics are needed for methods that

either only produce an output or only takes inputs by reference – they will be already performant
when put in a retryable adapter.

Writing Meaningful Instrumentation for Retry Operations
The keen-retry crate allows you not only to inspect each state of the retry process in order to

increment counters or log messages, but also offers a rich set of High Order Functions – akin to the
ones in the standard Result<> and Option<> – designed specifically for manipulating the retry

data (in the retry pipeline) to offer richer instrumentation.

For instance, a consumer method may have its input returned back to the retry process, but the High
Order Functions offered by RetryResult can upgrade that type to a tuple that starts a stop-

watch, if you would like to measure how much time was lost in retrying.

For an in-depth overview of the associated features, please consult the dedicated section entitled
“Instrumentation and Logging”.

19

Using Composable Retry Policies in the Library Level
Using composable retry policies at the library level is a powerful pattern which you and your
library’s users can benefit from, specially in complex situations. It promotes:

• Separation of Concerns: Composable retry policies allow for a clean separation between
the core logic of an operation and its retry behavior. This separation makes the code more
maintainable, as changes to the retry policy or the core logic can be made independently.

• Flexibility and Reusability: By decomposing retry logic into composable elements,
libraries can offer users the flexibility to assemble retry behaviors that best fit their specific
use cases. This approach promotes reusability, as different parts of the library or even
different projects can leverage the same retry components.

• Consistency Across Operations: Using a standardized set of retry policies across different
operations in a library ensures consistency in how failures are handled, making the library’s
behavior more predictable and easier to understand.

The send() library function, from tests/external_library.rs, showcases this pattern –

which can be implemented in 3 layers:

1. The Raw Layer: this contains the main functionality of the library – in our case, the
“sending logic”. It is defined by the function send_raw().

2. The Retryable Layer: this is where you add the keen-retry’s wrapper to your library,

as seen above – see send_retryable().

3. The Composable Retry Policy Layer: In the following example, you will find how a
“connection checking & reestablishment” could be done, preventing the application for
dealing with these details – which can get quite complex, depending on the protocol and the
steps needed to bring the connection back to the same state.

/// Wrapper around [Self::send_raw()], enabling `keen-retry` on it and adding a layer
/// to the retrying process: check if the connection is ok and attempt to reconnect.\
/// This wrapper demonstrates how to add the composable retry policy in the Library
/// level -- for a composite retry policy in the application level, see
/// [use_cases::broadcast()].
pub async fn send<T: Debug + PartialEq>
 (&self,
 payload: T)
 -> RetryConsumerResult<(), T, TransportErrors<T>> {

 self.send_retryable(payload)
 .or_else_with_async(|payload, error| async {
 if !self.is_connected() {
 match self.connect_to_server().await {
 RetryResult::Transient { input, error } => {
 warn!("`external_lib::send({payload:?})`: Transient failure
 attempting to reconnect: {}", error);
 },
 RetryResult::Fatal { input: _, error } => {
 error!("`external_lib::send({payload:?})`: Error attempting
 to reconnect (won't retry): {}", error);
 return RetryResult::Fatal {
 input: payload,
 error: TransportErrors::CannotReconnect {
 payload: None,

20

 root_cause: error.into()
 }
 };
 },
 _ => {
 info!("`external_lib::send({payload:?})`: Reconnection
 succeeded after retrying");
 },
 }
 }
 RetryResult::Transient { input: payload, error }
 })
 .await
}

As seen in the above example, the main function(s) to enable a composable retry logic in the library
level is/are or_else_with<_async>(), through which you can apply the given transformation
sync/async closure to the operation if it ended up in a Transient result – the closure must return

the new RetryResult after applying the counter-measures that will continue down the functional

pipeline.

Using Composable Retry Policies in the Application Level
Adding composable retry policies straight to the application code is the easiest way to achieve
composability, as nested retrying operations can be called directly by the closure passed to
retry_with<_async>(). If, after having read the previous section, you have ruled out your retrying
logic is not general enough to be placed along the library or library adapter, it most certainly
belongs to the application level.

We call this the “keen-retry Application Layer”, which is defined in the “Code Layout and

Naming Conventions” sub-topic of the “Getting Started” section.

By using composable retry policies defined in the application, you can:

• Have more elaborated retrying policies, tailored for the application’s problem domain.

• Nest with other specially tailored retrying policies, also defined in the application – which is
not possible when composing in libraries.

• Use Dynamic Configuration for the backoff strategies: Application-level retry policies
can be dynamically configured based on runtime conditions or external configuration
settings. This flexibility allows for adjusting retry behavior without modifying the
underlying library code. A rule of thumb: defining a backoff strategy should only be done in
the application level.

• Integration with Application Logging and Monitoring: Implementing retry policies at the
application level makes it easier to integrate with the existing logging and monitoring
infrastructure. This integration can provide valuable insights into the application’s behavior
and performance, especially in terms of error handling and recovery.

21

Anti-Patterns in Resilient Software Design

Introduction
In the realm of software resilience, particularly when using keen-retry, it's crucial to recognize

and avoid certain anti-patterns that can lead to inefficiency, resource drain, or outright failures. This
section aims to elucidate some of these common missteps, why they should be avoided, and how to
elegantly sidestep them.

Avoid Non-Transient Retries
Rationale: Retrying operations that fail due to non-transient errors (such as logic bugs or permanent
network configuration issues) is futile, can waste resources and may ruin the application
performance.

Elegant Solution: Model the errors and implement logic to detect and classify them accurately,
distinguishing between transient and non-transient. Utilize keen-retry's ability to differentiate

error types and tailor retry policies accordingly.

Infinite Loops and Lack of Backoff
Rationale: Infinite retry loops, or even just those without appropriate backoff strategies, can quickly
escalate into performance bottlenecks or denial-of-service incidents.

Elegant Solution: Use keen-retry's built-in backoff strategies to intelligently space out retries.

Establish clear conditions for ceasing retries, such as a maximum number of attempts or a
cumulative timeout – as discussed in the “Backoff” section.

Overcomplexity in Retry Logic
Rationale: Complex retry policies can obfuscate the underlying logic, making the system harder to
debug, test, and maintain.

Elegant Solution: Leverage keen-retry's composability features to break down complex retry

logic into simpler, reusable components. This enhances clarity and maintainability.

Retryable Library without Integration Tests
Rationale: Creating complex retry wrappers without proper testing, can lead to unexpected behavior
and difficult-to-trace bugs with cumulative fix costs.

Elegant Solution: Create robust integration tests using the available counters to ensure the library's
retry mechanisms perform as expected. Document the behavior to aid users in understanding the
intended operation.

22

No Unit Testing when using Wrapped Libraries
Rationale: Utilizing libraries with keen-retry wrappers without verifying your application-

specific retry and instrumentation logic can leave blind spots in error handling.

Elegant Solution: Write comprehensive unit tests that specifically test the retry capabilities and
instrumentation provided by the library, but customized by the application. Ensure these tests cover
various failure scenarios to validate the resilience of the retry logic.

Appropriate Backoff Strategy
Rationale: Inadequate backoff strategies, especially in distributed systems, can lead to ‘retry storms’
that exacerbate system outages rather than ameliorate them.

Elegant Solution: Employ keen-retry's advanced backoff strategies that include randomization

and jitter to distribute the retry load. This can prevent synchronized retries that can overwhelm the
system. Consult the “Backoff” section for deeper insights.

Instrumentation of Retry Processes
Rationale: Retries without proper instrumentation can silently perform redundant work or mask
underlying issues, especially when bugs are present.

Elegant Solution: Instrument retry operations to provide visibility into their behavior, using keen-
retry's logging and metrics facilities. This allows for proactive monitoring and debugging,

particularly useful in pre-production environments. Consult the “Instrumentation and Logging”
section for insights.

Nesting Retries Without Timeouts
Rationale: Nested retry operations without timeouts can lead to an explosion in wait times, as
backoff intervals may compound across layers.

Elegant Solution: Always use timeouts when implementing nested retries. Design these timeouts to
be adaptive, ensuring that the cumulative delay is reasonable and that the system remains
responsive.

The “Backoff” functions contain some built-in timeout facilities – specially useful when using
Tokio’s Timeout is not a possibility.

By understanding and avoiding these anti-patterns, developers can harness the full potential of
keen-retry to create resilient systems. The key lies in thoughtful implementation, strategic

testing, and a deep understanding of the library's capabilities and best practices.

In addition to the keen-retry-specific anti-patterns already outlined, consider the following

additional ones that can commonly occur when implementing retry logic in software systems in
general:

23

Lack of Idempotency
Rationale: Retrying operations that are not idempotent can cause duplicate processing and data
inconsistency, especially in distributed systems.

Elegant Solution: Ensure that operations are idempotent or that the system can handle duplicate
requests gracefully. Implement mechanisms like unique transaction IDs or check tokens to prevent
side effects on retries.

Misplaced Retry Logic
Rationale: Implementing retry logic too close to the core logic can lead to a mix of concerns,
making the code harder to reason about and maintain.

Elegant Solution: Abstract the retry logic into a dedicated layer or component, keeping business
logic separate from resilience logic. This separation of concerns facilitates cleaner architecture and
easier testing.

Over-reliance on Retries
Rationale: Overusing retries as a band-aid for underlying stability issues can mask the root causes
and lead to a fragile system and overloaded system.

Elegant Solution: Use retries judiciously, not abusing on the time allowed for recovery nor on the
number of reattempts performed, and frequently investigate the root causes of transient errors.
Address these issues at their source to reduce the need for retries.

Ignoring Contextual Information
Rationale: Not taking into account the broader context of the operation being retried (e.g., user
experience, state of the system) can lead to poor decisions about when and how to retry.

Elegant Solution: Design retry logic that is aware of context and can adjust its behavior based on
the current state of the system, user needs, and other relevant factors.

Retry Logic with Static Parameters
Rationale: Using static parameters for retry logic, such as fixed delays or a set number of retries,
doesn't adapt to varying system loads or error conditions.

Elegant Solution: Implement adaptive retry logic that can change parameters based on current
conditions, using metrics like error rates, system load, and performance thresholds.

The “Exponential Backoff with Random Jitter” strategy takes in a closure (instead of a
constant or variable) to remind of / emphasize the dynamic aspect of a good retrying strategy.

24

Instrumentation and Logging
Effective instrumentation and logging are crucial for the observability and reliability of applications
that implement retry logic. The keen-retry crate offers a range of functionalities to enable

detailed monitoring of retry operations. Below we explore how to instrument and log different
aspects of retry processes.

The code exerpts presented here comes from tests/use_cases.rs – specifically the functions

keen_connect_to_server(), keen_send() and keen_receive(). Please, refer to them for further
insights offered by their comments.

Monitoring Retry Outcomes
To inform when an operation succeeds after retries or fails after giving up, use the
.inspect_recovered() and .inspect_given_up() methods respectively. These

methods are part of the ResolvedResult type and allow you to log the number of retry

attempts, the duration of the retry process (if you map the “input”), and the errors encountered.

For example, in the keen_connect_to_server() function, the .inspect_recovered() method

logs a success message, including the count of retries and a list of errors that occurred before a
successful connection:

/// Shows off a simple retry logic with a simple instrumentation, ensuring any retry
/// attempts wouldn't go on silently.\
/// This is the minimum recommended instrumentation, which would be lost after
/// downgrading the [keen_retry::ResolvedResult] to a standard `Result<>`.
pub async fn keen_connect_to_server(socket) -> Result<(), ConnectionErrors> {
 socket.connect_to_server().await
 .retry_with_async(|_| socket.connect_to_server())
 .with_exponential_jitter(||
 keen_retry::ExponentialJitter::FromBackoffRange {
 backoff_range_millis: 10..=130,
 re_attempts: 10,
 jitter_ratio: 0.1
 })
 .await
 .inspect_recovered(|node, _, retry_errors_list|
 warn!("connected to {} after retrying {} times (failed attempts: [{}])",
 node,
 retry_errors_list.len(),
 keen_retry::loggable_retry_errors(retry_errors_list)))
 .into_result()
}

Similarly, in keen_send(), the .inspect_given_up() method is used to log when the

operation has failed after all retry attempts have been exhausted:

.inspect_given_up(
 |(_loggable_payload, payload, retry_start), retry_errors_list, fatal_error|
 error!("`keen_send({payload:?})` FAILED after exhausting all {} retrying attempts
 in {:?} with error {fatal_error:?}. Previous transient failures: [{}]",
 retry_errors_list.len(), retry_start.elapsed().unwrap_or_default(),
 keen_retry::loggable_retry_errors(retry_errors_list)))

25

The time-related retry_start parameter above is the result of employing the High Order

mapping Functions to opt-in for time measurements, as we will see ahead.

Logging First Attempt Outcomes
The .inspect_fatal() method can be used to log outcomes of the first attempt. If the first

attempt results in a fatal error, meaning no retries will be performed, this method provides a
mechanism to log that immediate failure.

In both keen_send() and keen_receive() functions, the .inspect_fatal() method is

employed to log fatal errors:

.inspect_fatal(|payload, fatal_err|
 error!("`keen_send({payload:?})`: fatal error (won't retry): {fatal_err:?}"))

This method is available at either RetryResult and ResolvedResult types, allowing the

pipeline to be composed with this functionality either before or after the retrying process.

For simmetry, the .inspect_ok() methods are also available, allowing to log succesful

outcomes of the first attempt – although you would refrain from using it for log levels other than
trace or debug, so not to pollute the logs with excessive information.

Enriching Retry Data
To add a stopwatch for measuring the time spent in the retrying process, use the .map_input()

method to transform the input into a tuple that includes the starting time, which can then be used to
calculate the elapsed time for retries.

This pattern is demonstrated in the keen_send() function:

.map_input(|payload| (payload, SystemTime::now()))

And then the elapsed time is calculated and logged:

.inspect_recovered(|(loggable_payload, duration), _output, retry_errors_list|
 warn!("`keen_send({loggable_payload})`: succeeded after retrying {} time(s) in
 {:?}. Transient failures were: [{}]",
 retry_errors_list.len(),
 duration,
 keen_retry::loggable_retry_errors(retry_errors_list)))

There is a small portion of the code, not shown here, to convert the SystemTime into a

Duration. For details, please head to the source of the exerpts used throughout this section.

26

Additional Features
The keen-retry crate also allows for logging and handling unrecoverable errors with

.inspect_unrecoverable(), mapping different types of input data with

.map_unrecoverable_input(), and chaining operations with

.map_reported_input_and_output() for more detailed control over what gets logged

and returned from the retry operations.

For instance, in keen_receive(), unrecoverable errors after retries are logged, providing insight into
the number of attempts made and the total duration before the failure:

.inspect_unrecoverable(|retry_start, retry_errors_list, fatal_error| {
 warn!("`keen_receive()`: fatal error after trying {} time(s) in {:?}:
 {fatal_error:?} -- prior to that fatal failure, these retry attempts
 also failed: [{}]",
 retry_errors_list.len()+1,
 retry_start.elapsed().unwrap_or_default(),
 keen_retry::loggable_retry_errors(retry_errors_list));
})

Other Uses
Although the discussions here imply the usage of the “Instrumentation and Logging” features in a
backend environment, these same principles could be applied in other contexts, such as in a GUI
application to enhance user experience.

For instance: if a user presses “save” or “send” and expects the information to be sent through the
network, warnings could be drawn on the screen if, as we’ve seen, there was a transient failure due
to network and a retry is being attempted. Possibly including the number of re-attempts and stating
if a reconnection needed to be made could improve even more the operational aid given to the user.

A carefully crafted retry closure could also detect any “cancel” button presses the user might do, so
to stop the retry process earlier if this is what is desired – lets say, possibly to “save battery” while
the conectivity issue is worked out by the user.

27

Performance Analysis

Introduction
In this section, we will dive into the performance characteristics of the keen-retry crate,

demonstrating its efficiency and the zero-cost abstraction it offers. We’ll examine how keen-
retry integrates with Rust applications and compare its runtime performance against standard

Result<> types under various conditions.

This analysis was done based on the findings of the benchmark at
benches/zero_cost_abstractions.rs.

Benchmarking Methodology
The performance benchmarks were conducted using the criterion crate, a powerful Rust library

for setting up and running benchmarks. The focus was on comparing the execution time of
operations that either succeed or fail fatally at the first attempt, as these scenarios are directly
comparable to the standard Rust Result<>. Operations resulting in a Transient state were not

included, as they involve additional retry logic. On the other hand, a full pipeline of transformations
and instrumentation was included to prove the compile-time friendliness of the crate.

The benchmarks were set up to measure the following:

1. Raw Operation: A simple function returning a Result<> type, alternating between Ok

and Err states.

2. Retryable Operation: An equivalent operation wrapped in keen-retry's

RetryResult<>, which – as mentioned – ommits the third possible outcome,

Transient.

3. Application-Level Operation: A function simulating application-level retry logic, which
involves instrumenting and potentially retrying the operation using keen-retry's

Application API.

To ensure fairness and accuracy, each benchmark was run multiple times, with the system state reset
between runs to minimize the impact of caching and other external factors.

Results

28

The benchmarks revealed that keen-retry operations exhibit no overhead when compared with

the standard Result<> in cases where operations do not involve retries. Specifically:

• Raw Operation: Served as the baseline for performance comparison, measuring the runtime
characteristics of the standard Result<> type.

• Retryable Operation: Demonstrated no overhead when opting out of the retry feature by
converting RetryResult<> directly to Result<>, which, as proved, is done at compile-

time.
• Application-Level Operation: Showed that even when opting into the retry logic, but

without actual retries occurring, the overhead was zero due to compile-time optimizations.

For achieving such astonishing optimizations, annotating with #[inline(always)] the
methods that utilize the “Library API” and “Application API” was needed.

Implications
The zero-cost abstraction principle is vital in systems programming, where every cycle counts. The
keen-retry crate adheres to this principle by providing powerful error handling and retry

capabilities without sacrificing performance. This ensures that developers do not have to
compromise on efficiency when building resilient applications in Rust.

For library authors, the keen-retry crate offers a seamless way to enhance the robustness of

their code with no performance impact. Application developers benefit from the flexibility to
implement detailed retry logic tailored to their specific needs, without worrying about runtime
penalties.

Conclusion
The performance analysis confirms that keen-retry stands up to the demands of high-

performance Rust applications. By adhering to zero-cost abstraction principles, keen-retry

ensures that developers can build upon a foundation of resilience without impacting the speed and
efficiency that Rust is known for.

29

Backoff
Backoff refers to the practice of deliberately delaying retries after encountering failures. This delay
serves several important purposes:

1. Prevents Overloading Systems: By introducing a delay between retries, programs avoid
overwhelming overloaded systems with repeated requests. This allows the system to recover
and handle the requests more effectively.

2. Reduces Contention: Back off helps reduce contention for resources, especially when
multiple programs or services are attempting to access the same resource simultaneously.
This can prevent congestion and improve overall performance.

3. Prevents Thrashing: Thrashing occurs when a system spends more time retrying failed
operations than performing useful work. Back off helps prevent thrashing by slowing down
the retry process and giving the system time to recover.

4. Reduces Error Rates: By delaying retries, programs can avoid repeating the same mistakes
that caused the original failures. This can lead to lower error rates, fewer log warnings and
more reliable operation.

For these reasons, retrying with a backoff is an essential component of resilient programming,
enabling programs to handle transient failures gracefully and maintain overall system stability and
performance.

Retrying Strategies without Backoff
Nonetheless, there are a few cases where not using a backoff is advantageous:

• Hard real-time systems, with local communications and low error rates. An example of this
may be a single producer trying to put elements in a local queue. If the queue gets full, it
may be acceptable for the producer to spin during retries, instead of sleeping.

• Services that may recover from transient errors faster than the time it takes to prepare a new
retry attempt. The keen-retry library allows custom code to run on each retry attempt –

which may, for instance, log the occurrence, compute a metric or do any other long
operation, such as storing something in a database. Should these pre-retry operations take
too long, backing off might just not be needed at all.

To account for these scenarios, the following methods are provided:

• spinning_forever(): keeps the thread busy retrying, without context-switching, but

putting the CPU in the “relaxed” state, suitable for spin loops that react in a very low
latency. Use with caution, as this method may dead-lock the thread at 100% CPU usage, as
there is no limit for the number of retries:

let result = produce_operation()
 .retry_with(|_| produce_operation())
 // spin-loops until success

30

 .spinning_forever()
 .into();

• spinning_until_timeout(duration, timeout_error): also keeps the thread

busy retrying, possibly context-switching to consult the system time – but limits the locking
to the specified timeout duration, which, if elapsed, causes the operation to fail with

timeout_error:

let result = produce_operation()
 .retry_with(|_| produce_operation())
 // spin-loops for up to the given timeout
 .spinning_until_timeout(1000ms, MyError::TimeoutError)
 .into();

For async programming, there are additional methods available:

• yielding_forever(): similar to spinning_forever() above, but let Tokio

execute other tasks instead of simply looping:

let result = produce_operation()
 .retry_with(|_| produce_operation())
 // let Tokio run other tasks until success
 .yielding_forever()
 .into();

• yielding_until_timeout(duration, timeout_error): similar to

spinning_until_timeout() above, but let Tokio execute other tasks instead of

simply looping:

let result = produce_operation()
 .retry_with(|_| produce_operation())
 // let Tokio run other tasks for up to the given timeout
 .yielding_until_timeout(1000ms, TimeoutError)
 .into();

Retrying Strategies with Backoff
For all other usage scenarios, a backoff strategy is recommended.

Bellow we will see some common strategies, going from the simplest to the more sophisticated
ones.

Common Backoff Algorithms and Analysis
As seen, the keen-retry crate offers flexible backoff configurations through iterators, which

specify both the amount of sleeping time between attempts as well as the number of attempts.
Although the users may build their own strategies, here goes a summary & analysis of the most
common ones:

Constant

This is the simplest backoff possible: simply sleep for s on each of the n attempts:

31

.with_delays((1..=n).map(|_| Duration::from_millis(s))

The total time spent sleeping between re-attempts is a simple multiplication:

∑=n . s

Although simple, you must be careful when choosing this strategy, as the number of simultaneous
attempts quicky scale up with the number of instances running, which may be of concern if the
operation make requests to external services: overloading the resource becomes a possibility. For
this reason, for large n, this strategy may only be acceptable if, at most, a few instances are running
simultaneously – lets say, on a scheduled job.
On the “pros” side, this strategy offers a very predicable backoff sleeping time, which may be
desired for some time-constrained scenarios.

Arithmetic Progression

This is also a simple backoff strategy, but goes an extra mile in avoiding the overload of external
services by varying the sleeping time between re-attempts progressively:

.with_delays((100..=1000).step_by(100).map(|millis| Duration::from_millis(millis)))

In the above expression, the number of re-attempts, n, is not directly expressed – but it may be
determined through the initial element a1, the last element an, and the step s between elements
with:

n=1+
an−a1

s

With that, the maximum time spent sleeping between re-attempts is given by sum of the arithmetic
progression, through the formula:

∑=n
2
(a1+an)

Where:

• n is the number of terms in the progression,

• a1 is the first term,

• an is the last term.

Geometric Progression

This strategy is a step towards preserving resources, as it increases the backoff time exponentially
(from a growth ratio) to reduce the chances of congestion:

.with_delays((1..=15).map(|i| Duration::from_millis(1.5849f64.powi(i))))

In this example, up to 15 retries are performed. Considering the retry attempts fail immediately, the
total delay may be calculated with the formula for the sum of a geometric progression:

32

∑ =
a1(1−r n)

1−r

which, on our case, may be simplified to:

∑=1−r(n+1)

1−r

Where:

• a1 is the first term of the progression.
• r is the common ratio between terms.
• n is the number of terms.

For the geometric progression in the given example, the whole retry operation may backoff for up
to 2.7 seconds.

The crèam de la crèam: Exponential Backoff with Random Jitter

If you are using a shared resource, such as a network service, the problem known as “thundering
herd problem” may arise. Imagine a scenario where a network problem cause connections to hang
and multiple client nodes are waiting. Suddenly, the problem is solved – meaning all hanged
connections are dropped at the same time, while new ones may be accepted. If all the nodes are
running the same code, whatever the backoff strategy used (from the ones we’ve seen so far) is
likely to cause all the retry attempts to be done simultaneously, as all instances would be backing
off for the exact same amount. This sudden surge in requests can overwhelm the resource, causing it
to become unavailable or significantly slown down.

The term “thundering herd” is an analogy to a herd of animals rushing towards a water source. Just
as a large herd of animals can congest the access to the water source, a large number of concurrent
requests can overwhelm a resource and cause it to malfunction.

To mitigate this, we must go beyond predictable behaviors – and this is best done by progressing the
backoff time exponentially with an added random jitter.

To use the jittered, exponential backoff:

/// backoff exponentially, from 100ms to 15 seconds in 10 re-attempts
/// with +/- 20% random variance – ideal for retrying network requests
let exponential_jitter_config = || keen_retry::ExponentialJitter::FromBackoffRange {
 backoff_range_millis: 100..=15000,
 re_attempts: 10,
 jitter_ratio: 0.2,
};
let result = produce_operation_retry()
 .retry_with(|_| produce_operation())
 .with_exponential_jitter(exponential_jitter_config)
 .into_result();

33

High available systems with low error rates may benefit from using an initial backoff of 0: if one of
the nodes on a highly distributed system fail, retrying by waiting zero time may be the best
approach (as failures are rare) – in this scenario, the request might be promptly picked by another
node. Subsequent retries may wait progressively more, if this doesn’t hold true.

34

Comparison to Similar Crates
To create a comprehensive comparison of the keen-retry crate with other similar libraries in

Rust, let's first list the key features of keen-retry based on our previous discussions and then

identify other notable retrying and error-handling libraries in the Rust ecosystem. Finally, we'll
compile a comparative table highlighting the features of each library.

Key Features of keen-retry
1. Functional API with High Order Functions: Similar to Result and Option, offering a

more intuitive approach to error handling and retries through functional composability.
2. Zero-Cost Abstractions: Compile-time friendly implementation ensuring no performance

overhead when operations either suceed or fail fatally at the first attempt.
3. Zero-Copy Semantics: Efficient handling of consumer operations, minimizing data copying

for performance through what we call “Recoverable Consumption” semantics.
4. Support for Procedural, Consumption, and Production Operations: Versatile

applicability across different operation types.
5. Composable Retry Policies: Combines different retry strategies flexibly and modularly, in

composable pipelines of High Order Functions and nested retry operations.
6. Configurable Backoff Strategies: Includes various strategies like fixed, exponential, and

jitter.
7. Advanced Instrumentation and Logging: In-depth logging and monitoring support

enabled by the functional design of the library.
8. Customizable Retry Logic: Tailoring retry behaviors for specific needs.
9. Timeouts and Limits: Prevents resource exhaustion by setting boundaries on retries –

specially useful for nested retry pipelines.
10.Asynchronous Support: First-class support for asynchronous operations.
11.Integration with Standard Rust Result Type: Seamless integration with Rust's Result

type with compile-time optimizations.
12.Clear Error Discrimination

Other Notable Rust Libraries for Retrying and Error Handling
• retry
• backoff
• tenacity
• resilient
• again

35

Comparative Table of Features

Feature keen-retry retry backoff tenacity resilient again

Functional API with High Order Functions ✓
Zero-Cost Abstractions ✓
Zero-Copy Semantics ✓
Support for Various Operation Types ✓
Composable Retry Policies ✓ ✓ ✓
Advanced Instrumentation and Logging ✓
Nested Retry Operations ✓
Asynchronous Support ✓ ✓ ✓ ✓ ✓

Key Differences
• retry, backoff, tenacity, resilient, again:

• While these libraries share many common features with keen-retry, each may

have unique capabilities or optimizations tailored to specific use cases.

• It is fair to say that keen-retry stands out regarding:

• Performance: through zero-cost abstractions + zero-copy semantics.

• Flexibility and Expressiveness: through a functional API enabling composable
pipelines.

• Instrumentation and Logging facilities to cover all cases with zero-cost
abstractions and data enrichment.

36

Important Staging Rust Features
In the future, the keen-retry crate may benefit from the following features that are awaiting

their turn to make it into stable Rust:

Async fn in Traits
Despite we can use Box<> around a Future to simulate an “async” trait, as the sync-trait

crate does, this rules out many code optimizations that could be done by the compiler – apart from
requiring a malloc() on every method call. This is, currently, an unacceptable performance hit

and the keen_retry_executors module does the next best thing: to repeat the method

signatures in order for both the sync and async executors to have the same API.

This is, obviously, not a great solution, as it impacts code maintainability, but, at least, it has no
impacts in performance. Once the “Async fn in Traits” make it to stable Rust, that portion of the
code may be improved. For more info, see Stabilizing async fn in traits in 2023.

The Try trait
Refactoring code that uses keen-retry enabled libraries is easy. As mentioned, our

ResolvedResult may be very easily converted into a standard Result by calling .into() or

.into_result().

When stable Rust allows user types to implement the Try trait, that extra call won’t be needed in

most cases. The Try trait, if implemented, allows the compiler to work with the ? operator directly,

so code like the following, in the application logic, could be rewritten from this:

let output = handle.retryable_method().into()?;

into this slightly simplified form:

let output = handle.retryable_method()?;

which is exactly the same as if retryable_method() returned a standard Result type.

Notice that, by now, the recommended Pattern for wrapping calls to retryable methods locally (to
the application) overcomes most of this trouble.

37

https://blog.rust-lang.org/inside-rust/2023/05/03/stabilizing-async-fn-in-trait.html

Mastering Resilience in Rust:Mastering Resilience in Rust:
The Power of keen-retryThe Power of keen-retry

In the ever-evolving landscape of software In the ever-evolving landscape of software
development, resilience and efficiency are development, resilience and efficiency are
paramount. "Mastering Resilience in Rust" paramount. "Mastering Resilience in Rust"
is your comprehensive guide to harnessing is your comprehensive guide to harnessing
the robust capabilities of the the robust capabilities of the keen-keen-

retryretry crate, a pivotal tool in the Rust crate, a pivotal tool in the Rust

 ecosystem for building resilient ecosystem for building resilient
 applications. applications.

Dive deep into the intricate layers ofDive deep into the intricate layers of
keen-retrykeen-retry, uncovering its cutting-, uncovering its cutting-

edge features and best practices. This book edge features and best practices. This book
expertly navigates through the crate's functional expertly navigates through the crate's functional
API, zero-copy semantics, and versatile API, zero-copy semantics, and versatile
support for procedural, consumption, and support for procedural, consumption, and
production operations. Whether you're a production operations. Whether you're a
library author or an application developer, the library author or an application developer, the
insights offered here will elevate your code's insights offered here will elevate your code's
robustness and error handling to new heights.robustness and error handling to new heights.

Key Highlights:Key Highlights:

• In-depth exploration of In-depth exploration of keen-retrykeen-retry's 's

composable retry policies and transient composable retry policies and transient
error handling.error handling.

•• Strategies for implementing Strategies for implementing
efficient and maintainable retry efficient and maintainable retry
logic, from basic to advanced logic, from basic to advanced
levels.levels.

•• A comprehensive comparison with A comprehensive comparison with
similar crates, helping you make similar crates, helping you make
informed choices.informed choices.

• Real-world examples and use Real-world examples and use
cases, illuminating the practical cases, illuminating the practical
applications of applications of keen-retrykeen-retry

features.features.

 “Mastering Resilience in Rust” not “Mastering Resilience in Rust” not
only guides you through the technicalonly guides you through the technical
intricacies of intricacies of keen-retrykeen-retry but also but also

illuminates the path to writing more resilient,illuminates the path to writing more resilient,
efficient, and maintainable Rust code.efficient, and maintainable Rust code.

Embrace this journey to transform your approachEmbrace this journey to transform your approach
to error to error handling and retrylogic in Rust.handling and retrylogic in Rust.

38

	Current as of keen-retry 0.3.0 and Rust 1.73
	
	
	Introduction
	A Dive Into The Problem
	Understanding the Challenge of Transient Errors
	The Complications of Retry Logic
	Integration and Performance Concerns
	The Role of keen-retry

	keen-retry Design Decisions
	Understanding Retries
	Two Types of Results
	Functional Approach to Error Handling
	Zero-Cost Abstractions
	Retry Logic Composition at the Application and Library levels
	Backoff Strategies

	Getting Started
	The crate's purpose
	High-level overview of features
	The keen-retry Diagram
	Preparing your Library’s Errors
	Understanding the Library API
	Understanding the Application API
	Code Layout and Naming Conventions
	Structuring Library Layers with keen-retry
	Application Layer Conventions

	Use Cases
	Event-Driven Programming
	Network Operations and Inter-Service Communication
	Resource Access
	User-Level Tasks
	Application Start-Up
	Background Jobs and Workers
	Elaborated Internal API Implementations
	Mobile & Embedded

	Patterns
	Adding a keen-retry wrapper to your library
	Retrying with Backoff Strategy Configuration
	Partial Completion with Continuation Data
	Participants and Interactions

	Partial Completion with Continuation Closure
	Writing a keen-retry adapter for a third-party library
	Writing Meaningful Instrumentation for Retry Operations
	Using Composable Retry Policies in the Library Level
	Using Composable Retry Policies in the Application Level

	Anti-Patterns in Resilient Software Design
	Introduction
	Avoid Non-Transient Retries
	Infinite Loops and Lack of Backoff
	Overcomplexity in Retry Logic
	Retryable Library without Integration Tests
	No Unit Testing when using Wrapped Libraries
	Appropriate Backoff Strategy
	Instrumentation of Retry Processes
	Nesting Retries Without Timeouts
	Lack of Idempotency
	Misplaced Retry Logic
	Over-reliance on Retries
	Ignoring Contextual Information
	Retry Logic with Static Parameters

	Instrumentation and Logging
	Monitoring Retry Outcomes
	Logging First Attempt Outcomes
	Enriching Retry Data
	Additional Features
	Other Uses

	Performance Analysis
	Introduction
	Benchmarking Methodology
	Results
	Implications
	Conclusion

	Backoff
	Retrying Strategies without Backoff
	Retrying Strategies with Backoff
	Common Backoff Algorithms and Analysis
	Constant
	Arithmetic Progression
	Geometric Progression
	The crèam de la crèam: Exponential Backoff with Random Jitter

	Comparison to Similar Crates
	To create a comprehensive comparison of the keen-retry crate with other similar libraries in Rust, let's first list the key features of keen-retry based on our previous discussions and then identify other notable retrying and error-handling libraries in the Rust ecosystem. Finally, we'll compile a comparative table highlighting the features of each library.
	Key Features of keen-retry
	Other Notable Rust Libraries for Retrying and Error Handling
	Comparative Table of Features
	Key Differences

	Important Staging Rust Features
	Async fn in Traits
	The Try trait

	Mastering Resilience in Rust: The Power of keen-retry

